Adaptive lattice IIR filtering revisited: convergence issues and new algorithms with improved stability properties

نویسندگان

  • Roberto López-Valcarce
  • Fernando Pérez-González
چکیده

Several algorithms for adaptive IIR filters parameterized in lattice form can be found in the literature. The salient feature of these structures when compared with the direct form is that ensuring stability is extremely easy. On the other hand, while computing the gradient signals that drive the direct form update algorithms is straightforward, it is not so for the lattice algorithms. This has led to simplified lattice algorithms using gradient approximations. Although, in general, these simplified schemes present the same stationary points as the original algorithms, whether this is also true for convergent points has remained an open problem. This also applies to nongradient-based lattice algorithms such as hyperstability based and the Steiglitz–McBride algorithms. Here, we answer this question in the negative, by showing that for several adaptive lattice algorithms, there exist settings in which the stationary point corresponding to identification of the unknown system is not convergent. In addition, new lattice algorithms with improved convergence properties are derived. They are based in the cascade lattice structure, which allows the derivation of sufficient conditions for local stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IIR System Identification Using Improved Harmony Search Algorithm with Chaos

Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...

متن کامل

Improved Convergence of Gradient Algorithms for Adaptive Iir Filters

The introduction of a simple correction term in gradient algorithms for adaptive IIR filtering is shown to improve their convergence and robustness. The error surface, i.e., the mean squared value of the output error as a function of adaptive coefficients, is quadratic in adaptive FIR filtering and thus a simple gradient search works well. This is not the case in adaptive IIR filtering where th...

متن کامل

Adaptive IIR Filtering Algorithms for System Identification: A General Framework

A6strmtAdaptive IIR (infinite impulse response) filters are particularly beneficial in modeling real systems because they require lower computational complexity and can model sharp resonances more efficiently as compared to the FIR (finite impulse response) counterparts. Unfortunately, a number of drawbacks are associated with adaptive IIR filtering algorithms that have prevented their widespre...

متن کامل

Adaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm

 A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...

متن کامل

Fast QR based IIR adaptive filtering algorithm

In this paper, we present a new QR based algorithm for IIR adaptive filtering. This algorithm achieves a reduction of complexity with regard to the IIR-QR algorithm by using a block reduction transformation. Moreover, this new approach make it possible to directly transform fast FIR algorithm into fast O (N) versions of the IIR algorithm. Therefore, we derive a fast version of the algorithm fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2001